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Abstract

Many low level visual computation problems such as focus, stereo, optical flow,
etc. can be formulated as problems of extracting one or more parameters of a non-
stationary transformation between two images. Because of the non-stationary nature,
finite-width windows are widely used in various algorithms to extract spatially local
information from images. While the choice of window width has a very profound
impact on the quality of results of algorithms, there has been no quantitative way
to measure or eliminate the negative effects of finite-width windows. To address this
problem, We introduce two sets of filters, "moment" filters and "hypergeometric"
filters. Due to their recursive properties, these filters allow the effects of finite-width
windows and foreshortening to be explicitly analyzed and eliminated.

We develop one paradigm to solve general one-parameter extraction problems us-
ing moment filters, and another one to solve general multiple parameter extraction
problem using hypergeometric filters. We apply these paradigms to problems of focus
and stereo, in which one parameter is extracted at every pixel location, and optical
flow, in which two parameters are extracted. We demonstrate that our algorithms
based on moment filters and hypergoemetric filters achieve much higher precision
than other techniques.

Keywords: Focus, Stereo, Optical Flow, Gabor Filter, Moment Filter, Hypergeo-
metric Filter, Low-level Processing, Computer Vision, Image Processing.



1 Introduction

Finite-width windows are widely used in various vision algorithms to extract spatially
local information from images. While the choice of window width has a very profound
impact on the quality of results of algorithms, there has been no quantitative way
to measure or eliminate the negative effects of finite-width windows. We propose
two sets of filters, "moment" filters and "hypergeometric" filters. Due to their re-
cursive properties, the effects of finite-width windows can be explicitly analyzed and
eliminated.

Many low level visual computing problems such as focus, stereo, optical flow, etc.
can be formulated as problems of extracting one or more parameters of a "nonsta-
tionary" transformation between two images. By nonstationary we mean that the
parameters are position dependent in the image. For example, we can formulate a
general correspondence problem as one in which we extract disparity as one parame-
ter in a position-dependent phase-shifting transformation. The nonstationary nature
of the parameters forces us to use finite-width filters for extracting information from
images. Despite the fact that most algorithms compute the parameters by either
explicitly convolving images with the finite-width filters (e.g. phase-based stereo)
or implicitly combining the outputs of finite-width filters in the spatial domain (e.g.
SSD in stereo), the effects of finite width are seldom analyzed. Most of times, the in-
formation extracted from finite-width filters are regarded as approximations of those
from infinite-width filters. But such approximations make the computations based
on the extracted information much less accurate or even totally impossible.

The most fundamental difference between finite- and infinite-width filters in the
Fourier domain is that the bandwidth of finite-width filters must be non-zero while
that of infinite-width filters is zero. Since a nonstationary transform in the Fourier
domain can be an arbitrary curve (or a surface) within the passband, the approx-
imation in ignoring the effects of finite width is equivalent to using a constant to
approximate the arbitrary curve in the passband. The moment filters and hypergeo-
metric filters approximate the curve by a polynomial, whose order can be arbitrarily
high so that the approximation can be as accurate as a specific task requires. There-
fore, the extraction of parameters based upon the polynomial approximation is much
more accurate.

We apply the technique of moment filters to the problems of focus and stereo.
Both the focus problem and stereo problem are examples of the general one-parameter
extraction problem. Traditionally, people estimate the parameter by comparing the
outputs of convolutions of the two images with the same filter, usually a Gabor filter.
Our moment filter approach provides a new insight into this traditional approach by
showing that the output of the convolution of one image with the Gabor filter can
be represented as an infinite sum of the output of convolutions of the other image
with moment filters. From this point of view, the traditional approach is simply
the zeroth order truncation of the infinite sum, which, in many cases, is the major
source of inaccuracy. By using higher-order moment filters, we are able to reduce the



inaccuracy.
When extracting parameters by using finite*-width filters, people usually assume

that the parameters are constant within the width of filters. But another aspect of
the nonstationarity is that the parameters actually change within the effective width
of the filters, which we refer to as the shift variance problem. Such problem is referred
to as foreshortening in stereo, and affine matching problem in 2D image registration.
Traditional infinite-width filters are unable to deal with the situation because the
infinite-width Fourier transform doesn't converge. The recursive properties of the
moment filters allow modeling this effect as a modification of the Gabor filter con-
volution by convolutions of the first-order moment filters. Applying this technique
to the focus and stereo problem, we demonstrate that we can not only eliminate the
negative effect on the estimation of the parameter caused by the foreshortening, but
also estimate the the degree of foreshortening quantitatively. Such a quantitative
measurement provides a new approach to the shift variance problem.

Both the traditional approaches and the moment filter approach suffer from the
frequency sampling problem, i.e. there is no way that the frequency domain can
be sampled completely and nonredundantly. If the frequency domain is sampled
sparsely, much information is abandoned, while if it is sampled densely, the results
from different frequency bands are highly correlated, which makes the merge of the
results difficult. Extending the idea of the moment filters, we developed another set
of filters, "hypergeometric filters". The advantage of the hypergeometric filters is
that they provide a complete and non-redundant decomposition of the local signal,
even though they sample the frequency domain in a nonuniform fashion. Based on
hypergeometric filters, the general problem of extracting parameters of nonstation-
ary transformation can be formulated as a multidimensional minimization problem.
Like the moment filters, the hypergeometric filters also have recursive properties in
both the spatial and frequency domain, and therefore, are also capable of extracting
parameters with high precision and dealing with the foreshortening problem.

We apply the hypergeometric filter technique to the optical flow problem, which
can be formulated as extracting two parameters from a nonstationary transformation
between two images. A 2D conjugate gradient minimization algorithm is employed to
compute the optical flow between two adjacent frames. Not only can this algorithm
produce very precise estimation of the optical flow, but also a meaningful error esti-
mation, which represents the aperture problem as covariance matrices, is computed
based on the minimization. Finally, we quantitatively compare the performance of
the hypergeometric filter approach with other popular techniques.

2 Related Research

The paradigm of extracting parameters by convolving images with filters which are
local in both the spatial and frequency domain, has been successfully used in many
low-level vision tasks, such as, motion analysis, stereo matching, texture analysis,
and focus measure in literature. Adelson and Bergen [2] and Heeger [10] modeled
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motions in 2D image space as orientations in 3D spatiotemporal space by introducing
3D oriented filters to measure image velocities. More recently, Fleet and Jepson [7]
modeled the normal velocity as a function of local phase changes, and then used
Gabor filters to measure changes of phase at every pixel location. For the stereo
matching problem, Weng [27], Sanger [23], Fleet et al. [8], and Langley et al. [16]
proposed using filters to extract phase information, then computed disparities. Jones

and Malik [12], on the other hand, applied a set of linear spatial filters to images and
used responses from those filters as matching features. Because the focus difference
between two images can be represented as a blurring convolution, many researchers
have also proposed using spatial frequency analysis to compute the focus difference
[29, 4, 26, 21]. The spatial frequency approach also achieved great success in texture
segmentation [5, 11, 15] and shape recovery from texture [14, 17].

The problem with finite-width windows mentioned in the previous section appears
in every application. Realizing finite-width filters cause errors and instability, some
researchers found ways to deal with this problems in literature. One way is to assume
that there are one or more dominating frequency components in images. Then around
the dominating frequencies, the effects of finite width are negligible. Though this
approach is effective when the assumption is valid, ordinary images usually don't
contain any dominating components. Another way proposed in literature is using two
techniques, a stability criterion for detecting the situations where the filter output
is dominated by window contamination [6, 30] and instantaneous frequency as the
spatial derivative of phase. In relating to our approaches proposed in this report,
both techniques are actually special cases of the moment filter approach. Both the
stability criterion and instantaneous frequency can be directly computed from the first
order moment filter. From this point of view, the moment filter approach generalizes
these two techniques.

Another common practice in literature in using finite-width filters is that low
frequency components are usually abandoned due to two reasons. One is that the
low frequency components are usually contaminated by the DC component because
Gabor filters have non-zero DC bias, and the DC component is usually very strong.
The other reason is that the negative effects of finite width is much severer when
the frequency is low than that when the frequency is high. Unlike Gabor filters, the
hypergeometric filter contains no DC component as long as the peak frequency is not
zero. And since we eliminate the effects of finite-width windows, the low frequency
components can also be used to compute high precision results. We will show that the
hypergeometric filter approach provides a canonical way of sampling the frequency
domain so that all information is gathered, including low frequency components which
actually contain surprisingly rich information.

3 Moment Filter Approach

In this section, we will propose the "moment filter" decomposition of the signal and
demonstrate how this decomposition can be effectively applied to problems of focus
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and stereo. When we apply such a decomposition to problems of focus and stereo, we
show that the effects of finite width can be represented by high order moment filters

though Taylor's expansion of the transformation. Furthermore, we are able to solve

the foreshortening problem in both cases by using the spatially recursive property of

moment filters, while the traditional Fourier analysis fails because the Fourier integral
doesn't converge.

3.1 Theory of Moment Filters

3.1.1 Definitions of Moment Filters

We define the ith order moment filter in the spatial domain as

mi(x) = pi(x) 1 e•reJf°x, (1)

in which S2n-Ln , -1 X2
.- -2>n, 2, T_2) i= 2n

Ai(X) 2 ' n! 1 x2(2)
P�+k) j2xL(n, ,) i = 2n + 1,

where n is an integer, j is -ý1, and L(n, a, x) is the generalized Laguerre polynomial

[20], with L(O, c, x) = 1. Figure 1 illustrates some of the moment filters in the spatial

domain.
Apparently the zero-order moment filter is the Gabor filter G(x; fo) with the peak

frequency fo:

G(x; fo) .2e ejf°. (3)

In the Fourier domain, the moment filter can be defined as

Mi(f) = .[mi(x)] = (f - fo)iCe(f-f°) 2, 2/2. (4)

Therefore, the peak frequency of the ith moment filter is

Peak[Mi(f)] = fo + -, (5)
o-

which moves away from the original peak frequency as i increases. Figure 2 illustrates

the pass bands of moment filters as i increases, assuming fo = 0. Note that only zero-
order moment filter has one single peak, all others have two peaks.

Another way to understand the moment filters is that the profiles of the filters, i.e.
mi(x) when fo = 0, can be generated by differentiating the Gaussian function g(x):

.d g(x)] = (jIf)l[g(x)] = jnfne-f 2u 2/2. (6)

From Eq. 4 and Eq. 1, we then have

mi(x) = j-,-Jf°x d, g(x). (7)
4xi
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Figure 2: The Pass Band Moves as i Increases

3.1.2 Decomposition by Moment Filters

In this section, we are considering moment filters based upon one Gabor filter, which
has the peak frequency fo. We also limit our discussion to one specific spatial location
xO = 0 unless we advise otherwise.

Let
k (x) = p*(x)J0fox, (8)

and the definition of an inner production over the function space as

< g(x),h(x) >= - g(x)h*(x)e 2adx, (9)

where * denotes complex conjugate, we then have

1. The functions ki in Eq. 8 are orthogonal with each other under the definition of
the inner production, i.e.

< ki (x), kj (x) >= 0, wheni 7j.(10)

2. For any function c(x) which has finite energy, we can decompose the function
into a weighted sum of ki. In other words, the set of function ki is a complete
and orthogonal basis set as

wi = < 6 (x), ki (x) >, (1

+00 
W

6X) wE ki(x). (12)i=0 < ki() i()>



The proof can be found in Appendix A.
Let us look into the inner production in Eq. 11,

Wi 2ioi-oo - (x)k'(x)e-- dx

L +001 
.2__

-(X*(X) e 2,2 e-jfodx

00 J (x)mi(x)dx, (13)

This equation can also be represented in the Fourier domain as,

1 __2

-+ [()](f0-)ie(fof) 2 2 2df

- (-1)i 0 F[ý(x)]Mj(f)df. (14)

In other words, the coefficients wi from convolutions of the signal with the mo-
ment filters can be used to losslessly reconstruct the original signal. Therefore, the
decomposition of the original signal by moment filters is complete and non-redundant.
Eq. 13 and Eq. 14 show the computation of wi in the spatial and the Fourier domains.
We will use these two equivalent representations in our later analysis.

3.1.3 Important Properties of the Moment Filters

We here list the important properties of the moment filters. The proof of these
properties can be found in Appendix B.

e They are recursive in the Fourier domain:

(f - fo)MA(f) M+i(f). (15)

e They are recursive in the spatial domain:

xmi(x) = j(imi-(X) - a2 mi+1(x)), (16)

wherej= -1.

* They are recursive with respect to the differential operation:

dxi
m'•(x) = J-id(eJf°ox lg (x))d

= j(rmi+i(x) - fomi(x)). (17)
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"* The instantaneous frequency is defined as the spatial derivative of the phase in
[23, 6]. Usually replacing the peak frequency of the Gabor filter by instanta-
neous frequency will increase the accuracy as claimed in [6]. The instantaneous
frequency can also be represented by moment filters as

dxo(xo) = fo- Re Wi) (18)

where Re means the real part, q is the phase, and w0 and w, are coefficients in
Eq. 13.

"* The stability criterion is proposed by Fleet et al. in [6] to locate where the infor-
mation extracted by finite-width filters is substantially different from those by
infinite-width filters. In other words, the extracted information is overwhelm-
ingly contaminated by window effects when the stability criterion is not satisfied.
We can represent the stability constraint as

T i =1 2 I + 11 -O fo 112= 11 W,1 j2 (91_ada w I (19)

adxo dx 0  II w0 112

The three recursive properties establish the interdependence among moment filters.
They are the most important ones. The last two properties demonstrate that both
instantaneous frequency and stability criterion techniques are ad hoc utilization of
information from the first-order moment filter.

3.2 Moment Filters For Focus

3.2.1 Problem Definition

The method of depth from defocus is to obtain depth information using a quantitative
measure of difference of focus between two images. For simplicity, we assume a Gaus-
sian model of the blurring function, even though, as we will see later, the approach is
applicable to any model. Let us denote two images as io(x) and iQ(x) in the spatial
domain and Io(f) and Ii(f) in the Fourier domain. The relations between these two
images are:

_12 _+• 0(••0 i_-ý=1 -•0 . -• o 20

il(x) =i 0 (x 0 e 0 io(t) C 0 ot (20)
v2i7roa-0  i-coa

Il(f) = Io(f)e-, 20/2 (21)

The difference of focus between two images is characterized by C0. If o' is not a
constant within the window but changes linearly in neighborhood of window center
x0 (referred as E(xo)), i.e

-o =s (1 + yX), X E C(xo), (22)
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we can expand the second integral term in Eq. 20 as follow:

1 _CL=L 1 _E•= (x - t) 2 
- s 2 _2_t)

0/- r0 2es3  
, +Z c e(x0), (23)

where we truncated terms of higher order of jx based upon the assumption that pi is
small.

Now we need to solve the following two problems:

"* Finite Window Problem: Since Eq. 21 is based upon an infinite window, how
can we compute crao when the window is actually finite?

"* Shift Variance Problem: Since Eq. 21 is based on the assumption that O0- is a
constant within the window, how can we compute s in Eq. 22 when oo is not a
constant, namely it 0 0?

Another way to understand Eq. 22 and 23 is that s represents the blurring differ-
ence at the pixel and pt the gradient of the blurring difference at the pixel. When
the blurring difference s is converted into depth, the gradient Yt is converted into
the surface gradient, or surface tilt. Therefore, solving the shift variance problem is
equivalent to simultaneously computing depth and shape. In the following discussions
we will only use a single Gabor filter with the peak frequency fo and the moment
filters based on the Gabor filter. In practice, however, we can optimally merge results
from multiple Gabor filters by Kalman filtering.

3.2.2 Finite Window Problem

In this section, we will our discussion to the situation when /L = 0, i.e. or0 is a
constant within the window. Let's define Ui and Vi as the convolution of the first and
the second image with the ith order moment filter, i.e.

Ui =jio(x)mi(x)dx
00

= (-1) +LIo(f)Mi(f)df, (24)

4= Jii (x)mi(x)dx

= (-1)t IJ(f)Mj(f)df

- (-1)i Jj o(f)e-f 2,2/2Mi(f)df. (25)

By Taylor's expansion, in the neighborhood of fo, i.e. e(fo), we have,

-f/ (o o foroo(f - fo) - - fo)2 ,f E e(fo), (26)
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where higher order expansions are truncated.
Replacing Eq. 26 into Eq. 25, and using the recursive property of moment filters

in the Fourier domain, we obtain,

S foo(f-fo)- 0°2 (f f1)2) e-(fo-f) 2/2df

~f'2o 2 /20

-°o•/2(r o~o2(1 f-2°U 2 ).
= f2 tc/O + foo2Ux - 2 (27)

Therefore, we have the equation to compute or,
2 _ ln Uo fo o~u - 2(1 _ f2 r2)

2=2 _- f 0 U2 ) - In .o (28)

Compared with the equation from Eq. 21, i.e.

a012 = 02 (In Io0(f0) - In/l1(f0)), (29)

we can see that if we make the assumption that the effects caused by window are

negligible, i.e.
Uo nIo(fo) (30)

In O = In Ii(f()'

this may result into substantial errors if either U1 or U2 happens to be not very small
comparing to Uo.

A more intuitive way of looking at the difference between Eq. 28 and Eq. 29 is illus-

trated in Figure 3. The solid line is the transformation curve e-f2 U/2, with ao = 1.0.
The peak frequency fo = 0.8, and the passband of the Gabor filter is (0.4, 0.8). The
dotted curve is the zeroth order approximation, i.e. Eq. 29 is equivalent to using
a constant to approximate the transformation curve within the passband. The first

order approximation (dash-dot curve), i.e. Eq. 28 with only the linear term, is equiv-
alent to using a line to approximate the transformation curve within the passband.
The second order approximation (dashed curve), i.e. Eq. 28, is equivalent to using a

quadratic curve to approximate the transformation curve within the passband. Gen-

erally, if we use up to the nth order moment filter, in the Fourier domain, we are
actually fitting the transformation curve by an nth order polynomial. Certainly, it
will drastically decrease errors comparing to the constant approximation.

Now, let us look back the truncation in Eq. 26. We truncated terms of -
for i > 2. Correspondingly, we truncated terms of U for i > 2 in Eq. 27. These

truncations are valid only if -U generally decreases in magnitude as i increases. Since
Uj is generated by convolving images with mi(x) as in Eq. 13, the expected magnitude
of Uj will be proportional to the square root of the energy of the filter:

E, = V. 1mi(x)II'dx )1/2
10
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11-• / - o [ M i(f ) 11 2 fr) 1/2

(27r +2 cr(i+1/2)' (31)

where F(x) is the Gamma function. Apparently, the expected magnitude of - will
decrease monotonically as long as the window widthcr is much larger than one pixel
size, which is usually satisfied.

Solving Eq. 28 is not as trivial as solving Eq. 29. But since the expected magnitude
of U0 is larger than those of U1 and U2, we propose to use Eq. 28 as an iterative
procedure to find the qth time estimation of o0 (q) such as:

2r(q) 2 l + 2(q-1)- Or2(q- - -
0 - f02 (InT(UO foua0 U1 2  

0 0  U2 ) -ln Vo)

- T(0(32)

And the sufficient condition for the iteration to converge is

(a2q) 1= 2 foUl - 1(1 -,22 2(,))U2

f2 Uo + foo'2(q)Ul _ 12(q)(1 - f022(q))U 2  < 1. (33)
0 - 2 0 0-J •O )J

For some locations, the convergence condition is not satisfied. And we can think of
the convergence condition as a generalized stability criterion. In fact, if we consider
only the linear term in the Taylor's expansion, this convergence condition is the same
as the stability criterion in [6].
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3.2.3 Shift Variance Problem

When Y ý 0 in Eq. 22 and Eq. 23, we must consider the effect of the shift variance.
Let us define,

Vi = ii(x)mi(x)dx, (34)

+= j P+e0 dt mi(x)dx. (35)

From convolutions of the two images with moment filters, we obtain Ui and 14.
The defined V'i can not be obtained from convolutions. But to estimate s, we need to
compute V' first. In other words, we need to virtually rotate back the slanted surface
to make it front-parallel, then compute the convolutions V'i of the rotated surface.
Replacing Eq. 23 into Eq. 34, we have

Vi= +ýo(+0 1,t (r-L2V) rn )dx +
14~ ~ 00 iot)27rs e22 m(

+ + z (X - t) 2 
- s 2 e - 2S2

f] -]i(t) 2irs3  'e 2s2dt) xmi(x)dx. (36)

Using the recursive property of the moment filter in the spatial domain in Eq. 16,
and converting the above equation into the Fourier domain, we obtain

+M-o 2 -f2s./2 •(2+ M2

4i = V- I -Io(f)(f2s2e /2),(oMi+l(f)- iM,_l(f))df

= V + js2/1(o-2(Vi+3 + 2foVi+ 2 + foVi+l) -

i(Vj+1 + 2fIV, + f02Vjix)). (37)

In other words, the effect of the linear shift variance is that the original filter outputs
Vi when the parameter is constant within the window are recombined linearly to form
Vi.

If the magnitude of y is small, we can then ignore the terms of second or higher
order of y, and have the following approximation from Eq. 37:

vi - Vi - js 2[1 (o 2(Vi+ 3 + 2foVi+2 + fo2 Vi+l) -

i(V+i1 + 2foV1 + f02Vi- 1 )

= Vii + s2 tPi, (38)

i.e. when y is small, we can reverse the effect of the linear shift variance, and obtain
the original filter output Vi when the the parameter is a constant within the window.
Once we have computed Vi, we can compute s by the iteration proposed in the
previous section as

f2 2 (ln(U0 + fos 2U1 - -( f 2  - ln(Vo s2 0)) (39)
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Now, the problem is that we don't know y. Therefore, we also need an algorithm
to estimate /t. Fortunately, we can compute p by taking the ratio of the zeroth and
the first moment by using Eq. 27 and Eq. 38:

V, + s 2 P1  U1 + fos 2U2 - !S2(1 - f2S2 )U32 (40)
Vo + 8 2yPo Uo -+ fos 2 U1 - 1s2(l - f0s 2 )U 2

Combining Eq. 39 and Eq. 40 together, we have two equations for two unknowns,
i.e. s and p. Regarding all the moments as constants in Eq. 39, and assuming the
iteration in Eq. 32 indeed converges, we can simplify Eq. 39 as:

2 = M(821)0, (41)

where M can be regarded as a complicated function of p. Similarly, Eq. 40 can be
simplified as:

S 2Y = P1(s2), (42)

where NK is a complicated function of 82.

Eq. 41 and Eq. 42 suggest another iterative scheme to solve both s and /I simulta-
neously. Let u = s2 and v = s2 t, and suppose the qth time estimation of u and v are
u(q) and v(q) respectively, we can approach the true value of u and v by iteration as:

U(q) = M(V(q-l)) (43)

V (q) = Af(u(q-1)) (44)

And the sufficient condition for the iteration to converge is that the magnitudes of
both the complex eigenvalues Ei, i = 0, 1 of the Jacobian matrix J are less than one,
i.e.

Ei f[< 1.0, i = 0,1, (45)

where,

j Iar a . (46)
all(q) 0

Therefore, when the convergence condition Eq. 45 is satisfied, we can iteratively
estimate depth and slope simultaneously as in Eq. 43 and Eq. 44.

3.2.4 Error Estimation

Error estimation is necessary if we have to merge results from different frequency
bands. The convergence conditions (Eq. 33 and Eq. 45) can identify serious cases of
the weak texture. But for those less serious cases, we still need to quantify the depen-
dency of errors on the image contents in order to optimally merge results computed
from different frequency bands.

Before we jump into the estimation of errors, we need to be clear in math. Gen-
erally, both Eq. 39 and Eq. 40 will return complex numbers for u and v, which in
practice, need to be real numbers. Because we know that the imaginary part of
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computed u and v should be zero, we simply drop the computed imaginary parts,
and therefore keep the u and v meaningful. As we are concerned about the error
estimation of u and v, we will encounter the following situation.

Let & = 6, + j6i as a zero-mean complex error source, whose magnitude E[&S"]
E[b2] + E[b?] = 2E[62] (we assume the error source is non-directional), and

u = Ab

v = Bb,

we then have,

SEAS ± A*&* B& + B*S*
E[UrVr] E[ 2 = Re(AB*)E[b6*]/2. (47)

Generally, if u, v and 6 are vectors, and A and B are matrices, we have,

E[urvT] = Re(AE[bb*T]B*T)/2. (48)

There are two types of error sources we need to take into considerations. The first
is the noises in images, and the other is the truncation error in Eq. 26 and Eq. 23.
To simplify the problem, we make the following assumptions:

1. The error caused by truncation in Eq. 23 is negligible.

2. The noise is white additive noise.

Based on these two types of error sources, the error in estimating u and v in Eq. 43
and Eq. 44 can be represented as (Appendix C)

du =AW, (49)

where A is a 2x6 complex matrix, and W is the 6x1 error vector. Applying Eq. 48
to Eq. 49, we have the covariance of Ur and v, as

E Re(AE [WW*T]A*T)/2, (50)[ durdVr dvrdVr I

where the covariance matrix E[WW*T] is a 6x6 diagonal real matrix.

3.3 Moment Filters For Stereo

3.3.1 Problem Definition

The method of depth from stereo is to obtain depth information using a quantitative
measure of the local shift between two images. Assuming io(x) and il(x) are the two
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images in the spatial domain, and Io(f) and II(f) are in the Fourier domain, we have
the following relations,

i1(x) = io(x + Do), (51)

Ii(f) = Io(f)ejfDo. (52)

The shift between two images is characterized by the disparity Do. The above
relation in the Fourier domain is valid only when Do is a constant within the window.
If Do varies, instead, in the neighborhood of window center xo (denoted as c(xo)), i.e.

Do = D + Yx, x E •(xo), (53)

we then have
d.

io(x + Do) - i0 (x + D) + tx +xio(x + D), x c e(xo), (54)

where we truncated terms of higher order of 1 based on the assumption that yt is
small.

We need to solve the following two problems:

"* Finite Window Problem: Since Eq. 52 is based upon an infinite window, how
can we compute Do with high precision when the window is finite?

"* Shift Variance Problem: Since Eq. 52 is based upon the assumption that Do is a
constant within the window, how can we compute D when Do varies within the
window as in Eq. 53?

3.3.2 Finite Window Problem

In this section, we limit our discussion to the situation when y = 0, i.e. the disparity
Do is indeed constant within the window. Let us define Ui and Vi as results from
convolving the two images with the ith moment filter, i.e.

Ui = J io(x)mi(x)dx

= (-i)i lo(fo)M(f)df (55)

Vi= i(x)mi(x)dx
f (-) j•o(f)CYSD°M,(f)df (6

- (i)iJf (56)

In the neighborhood of fo, i.e. e(fo), the transformation curve can be expanded
according to Taylor's expansion

ejfDo -efoDo°(1 + jDo(f - fo) - LO-(f - fo) 2), f E e(fo), (57)

2
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where higher order expansions are truncated.
Replacing Eq. 57 into Eq. 56 and using the recursive property of the moment filter

in the Fourier domain, we have

Vo = eC ifoDo (Uo - j DoU, - -•--U 2). (58)
2

Therefore, we have the equation to compute Do as

J ln(Uo -jDoU1 - U2) - In Vo (59)fo --- /o

Again, as we showed in the focus problem, the difference between Eq. 59 and Eq. 52
is that the moment filter approach uses a second order polynomial to approximate the
transformation curve eif Do in the neighborhood of fo, while the traditional approach
uses a constant eifoDo to approximate the curve. As we can see, only when U1 = U2 =

0, is Eq. 59 the same as Eq. 52. Therefore, when the magnitude of U1 or U2 is not
small, using Eq. 52 to compute Do will result into large errors.

By analyzing this way, it is not a surprise to learn that the stability constraint
used by David Fleet is actually the magnitude ratio of U1 and Uo , i.e.

LO +.j10a [ U1 I(60)II 9+ a Ox I-IIu0I

where q is the phase, and a is the magnitude. Eq. 60 also justified the so-called
phase singularity, which is location where Ul(f 0 ) is so large compared with UO(f 0 )
that Eq. 52 isn't even approximately valid. We can see that such situation is exactly
what Eq. 59 characterized.

While David Fleet figured out the constraint to find the locations of singularity
introduced by a finite window, he didn't find a specific way to correct the error caused
by a finite window. As the same as we did in the problem of depth from defocus, we
can use Eq. 59 as an iterative procedure to find qth time estimation of Do as

D(°q) = j (ln(Uo - jD (q-)U1 D 2 U2 ) - ln Vo

= T(D(-1)). (61)

And the sufficient condition for the iteration to converge is

1 D d- - D (J) 11< 1. (62)

3.3.3 Relations to the Phase-Based Method

Some researchers [8, 23, 27] recently advocated a phase-based approach to the stereo
problem. This approach simply divides the phase difference by the peak frequency
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or the instantaneous frequency to infer the disparity. Fleet[8] showed that when
the stability criterion is small, more precise results can be produced by using the
instantaneous frequency rather than the peak frequency.

Suppose we truncate the Taylor's expansion after the linear term, then Eq. 58
becomes

Vo = efoDo°(Uo - jDoUi). (63)

Rewriting the above equation, we then have

jfoDo = In Vo - ln(Uo - jDoU1). (64)

Because the stability constraint guarantees that U1 U1<H1 Uo 11, the second term of
the right side in the above equation can be approximated as,

ln(Uo - jDoUI) ,. lnUo - JDo-. (65)

Replacing Eq. 65 into Eq. 64, after some manipulations, we obtain,

(fo - u&)DO = jln Uo - Jln V0 . (66)

Taking the real part of the both sides in the above equation, and referring to the
definition of the instantaneous frequency in Eq. 18, we can see that the above equation
literally becomes that Do multiplied by the instantaneous frequency equals the phase
difference. Therefore, we can regard the phase-based approach as a special case of
the moment filter approach we propose here.

3.3.4 Shift Variance Problem

When p :$ 0 in Eq. 53 and Eq. 54, we must consider the effect of the shift variance.
Let

V = _ ii(x)m((x)dx, (67)
f 00

Vi = io(x + D)mi(x)dx (68)
.+00

(- (1)i f I+'o(f)eJnDMi(f)df. (69)

From convolutions of the two images with moment filters, we obtain Ui and Vi.
The define Vi can not be computed from convolutions. But to estimate s, we need to
compute V'i first. In other words, we need to virtually rotate back the slanted surface
to make it front-parallel, compute the convolution of the rotated surface. Replacing
Eq. 54 into Eq. 67, we have

f+00

1i i0(x + D)mi(x)dx +
+00 dio(x±D)1-00 dx xmi(x)dx. (70)
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Using the recursive property of the moment filter, after some manipulations, we
can rewrite Eq. 70 as

Vi = Vi - P(i(fli-l - Vi) - o2 (f0Vi+1 - Vi+ 2)). (71)

If y is small, we can then ignore the second or higher order terms when we reverse
the above equation, i.e. we can have the following approximation:

Vi P Vi + 1J(i(foVi- 1 - 1V) - +12(fo1i - Vi+2))

= Y + •P, (72)

where Pi is used for simplicity of illustration.

Combining Eq. 59 and Eq. 72, we have the equations to solve D and I,

D j ln(Uo - jDU1 - U2 ) - ln(Vo + /tPo) (73)

V1 ±+1 -+P 1  U1 - jDU 2 - 1D 2 U 3 (- (74)
Vo + Pfo Uo - jDU1 - ½D2 U2

The same iterative scheme we used in focus to solve s and y can also be applied
to the above equations to solve D and y simultaneously.

There are two types of error sources that we need to take into considerations. in
error estimation as we did in focus. The first one is noises in images, and the other
is the truncation error in Taylor's expansion. To simplify the problem, we make the
following assumptions :

1. The error caused by truncation in Eq. 54 is negligible.

2. The noise is white additive noise.

Based on these two types of error sources, the error in estimating D and P can be
represented as (Appendix C)

dD] =AW, (75)

where A is a 2x6 complex matrix, and W is a 6xl error vector. Applying Eq. 48 to
Eq. 75, we have the covariance of D, and y, as

E [ dD] dD dDdp, RalI(AErWW*T A*T /2, (76)E dD, dp, dy, d/

where the covariance matrix E[WW*T] is a 6x6 diagonal real matrix.
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3.4 Summary

We have shown how the moment filters can be used solve the problems of focus and
stereo. In fact, our moment filter approach can handle a broad category of problems,
which can be characterized as finding a single parameter in the transformation be-
tween two images. As long as the transformation is well modeled, the parameter and
its gradient can be accurately estimated from one frequency band by the following
generic algorithm:

1. In the neighborhood of the peak frequency fo, the transformation in the Fourier
domain can always be approximated as a polynomial of (f - fo), using Taylor's
expansion.

2. The recursive property of the moment filters in the Fourier domain allows ex-
panding the convolution of the Gabor filter with one image to be expressed as
the sum of convolutions of moment filters with the other image. Therefore, we
obtained an equation of the parameter, which can be usually solved by iteration.

3. The recursive property of the moment filters in the spatial domain allows the
modification of the filter outputs caused by linear shift variance of the parameter
within the window to be approximated as a linear combination of convolutions
of moment filters. This modification can be used to compute the gradient of
the parameter and correct the error in estimating the parameter caused by the
gradient.

Though we are very successful in solving transformations with one unknown pa-
rameter, such as problems of focus and stereo, there are some intrinsic limitations
with the paradigm based on one frequency band.

It is usually difficult to solve transformations which have more than one param-
eter because it is an under-constrained problem for one frequency band. For
example, it is not easy to extend the algorithm of stereo to solve the 2D cor-
respondence problem because 2D shift involves two independent parameters in
the transformation. Yet because we can have tens or even hundreds of frequency
bands, the overall problem should be overconstrained on the other hand. There-
fore, to solve problems with more than one parameter, we can no longer consider
each frequency band separately, we have to consider all together.

9 There is another related problem, which we refer to as the frequency sampling
problem. Though we can optimally combine results from different frequency
bands through Kalman filtering, the selections of peak frequency fo are still
ad hoc. They by no means represent the image content either completely or
nonredundantly.

To overcome these problems, we propose another set of filters, "hypergeometric"
filters, which have similar recursive properties as the moment filters do, and don't
suffer from the above two problems.
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4 Hypergeometric Filter Approach

Hypergeometric filters have the similar recursive properties as the moment filters
have, and two additional properties:

"* All hypergeometric filters have only one single peak frequency. Because the high
order moment filters have two peak frequencies, we have to base our analysis
on zero-order filters which have one single peak frequency. To hypergeometric
filters, We can certainly use all high order ones.

"* The set of hypergeometric filters samples the frequency domain completely and
nonredundantly.

We will show that, by using the hypergeometric filters, a general multiple parameter
extraction problem can be formulated as a multidimensional minimization problem.
Finally, we will apply this new technique to the optical flow problem.

4.1 Theory of Hypergeometric Filters

We define the "hypergeometric filters" or "H filters" in the Fourier domain as (m =
1, 2, ... , of):

era = cfree-f2Or2 /2 when f _> 0 (77)
Hm(f) 0 when f <0

H0(f) = (2V@.o)1/2efU 2/2 = coe-12a2/2 (78)
H-(f = 0 fo2 when f > 0 (9

H f cm(-f)me-f2- 2/2 when f < 0

where cm is a real normalization constant as

cm = 2a m  F(m + 1/2) (80)

Intuitively, a H filter represents either one peak of the two of a moment filter in
Figure 2 with fo = 0. Therefore, we can easily verify that Hm(f) is an asymmetric
bell-shaped band pass filter with the peak frequency at:

Peak[Hm(f)] = , (81)
0.

Peak[Ho(f)] = 0, (82)

Peak[HIm(f)] = (83)
0.

Doing inverse Fourier transform in Hgi(f) in Eq. 77 and H-m(f) in Eq. 79, we
then have the H filters represented in the spatial domain

hm(X) = rf(m + 1/2)oe 2a2
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h-.(x) h* (x), (86)

where 4(a, c, x) is a special type of hypergeometric function, usually called "confluent
hypergeometric function" or "Kummer's function" in literature, and a, and bm are
constants decided by m. Eq. 84 has already been normalized so that the energy of
the filter hm(x) is one. The solid curves in Figure 4 are H filters of second, fifth and
tenth order.

As shown in Appendix D, the H filters have the following property:

1 2 x2
h 2i(x) + h-2i(x) = kiL(i, -21 20 2 )e- (87)

1 X 2  X2
h2i.x(X) - h_( 2 i+l)(X) = jk 2xL(i, 2- 2__2)e,-- (88)

where k, and k2 are real constants decided by i, and L(n, az, x) is the generalized
Laguerre's polynomial. Comparing Eq. 87 and Eq. 88 with Eq. 2 and Eq. 13, referring
to the fact that moment filters are orthogonal and complete, we conclude that we can
losslessly reconstruct the original signal from coefficients resulted from convolving the
image with H filters.

Another important property of H filters is their recursive property (Appendix D)
in the spatial and Fourier domains, i.e. in the Fourier domain,

fHm(f) cm Hm+l(f), (89)
Cm+1

fHo(f) - C°(Hl(f) - H. 1(f)), (90)
C1

fJHm(f) - Cm H-(m+l)(f), (91)
Cm+1
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and in the spatial domain,

xhm(x) mjo -- -•hm+l(x) - 1 2 hm-(X) , (92)

xho(x) = a(hi(x)- h-l(x)), (93)

xh-,(x) = jo- +1-•h-(m+l)(X) m- 1/2 h-(m-1)(x) (94)

Unlike Gabor filters which have positive value at zero frequency, the DC compo-
nents of H filters are zero except for m = 0. Therefore, the H filters have the advantage
of avoiding the strong DC bias existing in Gabor filters which are extremely harmful
when the peak frequency is low.

Now let's look at the effective bandwidth in the Fourier domain and effective spatial
extension. According to Gabor [9], we have

AXx 2 f-+.fX2 II hm(x) I2 dx
Ax M j1 h .(x) 112 dx ' (95)

AfM2 f+-.(f - Peak[Hg(f)]) 2 11 Hm(f) 112 df (96)
f= I I Hm(f) 112 df

Figure 5 shows the effective bandwidth and effective spatial extension. As we all
know the uncertainty principle in local frequency analysis, the effective bandwidth
and effective spatial extension must satisfy the following uncertainty relation:

ým = •/AxMAf,, ! -2.1 (97)

And Figure 6 shows that, as Gabor filters have the minimal uncertainty, the product
of the spatial and the spectral uncertainties of the H filters is almost the minimal
though it is slightly larger (Em < 0.51, when m > 5).

Since Gabor filters are the only filters which have minimal uncertainty, and the
uncertainty of H filters approaches the minimal value as m increases, we can predict
that the H filters become more and more similar to Gabor filters as m increases. The
prediction is verified by Figure 4, in which solid curves are H filters, dashed curves
are the closest Gabor filters, in the sense that they have the same peak frequency and
the same bandwidth.

The H filters sampled the frequency space automatically as illustrated in Eq. 81
and Eq. 83. Unlike the frequency sampling in short time Fourier transform, which is
uniform, the H filters sample the frequency space in a non-uniform fashion. Figure 7
shows the samplings of the frequency space in STFT and H filters, in case of a = 2.0
and window size is 21. Such a sampling in frequency domain will be shown to have
great advantage in combining information contained in different frequency bands and
solving the multiple parameter problem.

22



Af2 0-3 A.
2

ljý2 a-2

250.00-1
1.50

249W -1.45 -

248.M( -. 0_

1.35 4

1.30
247.M0(

1.25

246.M( -- 12o-

1.15 -
245.00

1.10-

244.00
1.05

243.0 o o 8m I F m
0.00 20.0 40.00 60.00 0.00 20.00 40.00 60.00

Effective Bandwidth Effective Spatial Extension

Figure 5: Uncertainty in The Spatial and Frequency Domains

0.62

0.6

0.58

*o~6
0.56

0.54

0.52

020 30 40 50 60 70 80
m

Figure 6: Product of the Spatial and Frequency Uncertainty

23



2

1.75 1.75

1.5 1.5

1.25 1.25

0 75 .75

-4 - 2 -1 0 . 3 4 -4 -3 -2 -1 0 1 2 3 4

STFT H Filters

Figure 7: Frequency Sampling in STFT and H Filters

4.1.1 A General Approach to Multiple Parameter Problems

As an abstract example, let us consider a problem of trying to recover two parameters
(Pl,P2) in the transformation of T(f;pl,p 2) between two images Ii(f) and I2(f).
As we stated before, analyzing a single frequency band as we did in the moment
filter approach is not enough to compute two parameters. Therefore, we have to use
multiple frequency bands together to solve this problem. For simplicity of notation,
we only use H filters with positive frequency peaks hm(x), (m = 1,2, ... ) in this section.

The transformation can be represented as

I2(f) = T(f;pI,p 2)Ii(f) (98)

Suppose the transformation T(f;P1,P 2) can be approximated by an Nth order poly-
nomial Tp in the neighborhood of Peak[H,(f)] = '/--:

01

N Im_T, (f PI, P2) E Ai (m,P1, P2) fi, f E C (-) (99)

i=o

and let
Urn il(X)hn(- x)dx

-+00

= Ii(f)cMfme-f 2
o

2/2df (100)

Vm = 2(x)h(-x)dx

12 (f)Cm me-f 2a 2/2df

=] Ii(f)T(f; P1, P2)Cmfe- f 2 o2 /2df, (101)

and use the recursive property of the H filters in the Fourier domain,

f Hm(f) Cm Hm+i(f), (102)
Cm+i
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we then have,
N

Vm. E C Ai(m,pl,P 2)Um+i. (103)
i=0

Apparently, we can not robustly solve (pl,p2) from a single equation as Eq. 103
as we have two unknowns. But because the same relation should be satisfied by all
frequency bands, we can therefore minimize the following to find (Pl, P2):

M 2 N "1 
2S(pI,p 2 ) = M II V. - E +-Ai(m,pi,p2 )Um+i (104)

m=M1  i=O Cm+i

where M1 and M 2 are the indexes of filters which have the lowest and highest peak
frequencies respectively. A 2D conjugate gradient minimization algorithm can be
applied to the above function to detect the minima quickly.

We could also represent the above minimization on matrix format. Let,

Cm Ai(m,pl,p 2) = kmi(pi,p 2), (105)

Cm+i

we can rewrite Eq. 103 as,

V1 klo kil ... kiN 0 0 0 U1
V2 0 k20 k21 -' k2N 0 0 ... U2(16

V3 0 0 k30 k3l ... k3N 0 ... U3(16

• 0 0' "- "'J' ' '

or in a more concise form,
V = K(pi,p 2)U, (107)

where V and U are known vectors from convolutions, K(pl,p 2) is a matrix whose
elements are functions of (Pl,P2). Therefore, the minimization of S in Eq. 104 is
equivalent to minimizing the norm of difference between the left and the right side of
Eq. 107.

Whenever we try to extract multiple parameters, there is a so-called aperture
problem, which is caused by lack of constraint along certain direction in the parameter
space. In context of multidimensional minimization, the aperture problem happens
when the function S has a canyon instead of an obvious minima in the parameter
space. Therefore, the aperture problem can be represented by an error covariance
matrix with a large eigenvalue along one direction as we will show later in experiments.

4.2 Hypergeometric Filter Approach For Optical Flow

We will apply the technique of solving a general multiple parameter problem to the
two-parameter optical flow problem. The 2D transformation in optical flow problem is
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assumed to be translation, i.e. assuming two adjacent frames are i0 (x, y) and ii (x, y),
and the image velocity is (vx, vy), we then have,

il(xy) = io(X + Vx, Y Vy), (108)

I,(fx, fy) = Io(fx, fy)ej(fxvX+fYVY). (109)

For simplicity of illustration, we only approximate the above transformation by a
second-order polynomial according to Eq. 99 as

T(, (fxf; vx, vY) =i(fxvx+f'Yv)

(1 +jvx(fx - fox) + jvY(fY - fo) -vx(f fox) 2

-VxvY(f - fox)(f 2 - foy)- - f0y) 2 )eJfxVx+JoYVY)

2 2-i
-- Cij(fo,,foyVr, vy)f~f•. (110)

i=O j=O

Considering only positive peak frequency H filters, i.e.

Hm.(fx, fy) = H(fx)H.(fy),

we then obtain the following relation from Eq. 103:

2 2-i
V n= : 1: ,i - ý -iVx,7 Vy) e - (mni)(n~j). 11

i=O j=O07 a7 Cm+i Cn+j

Therefore, the function to be minimized will be,

M 2  N2  2 2-i CmCn 2,

S (v ,v) = -1 1 VmnZ ( ,L (-,V-, Vx, Vu)(m+i)(+j)II
m=M1 n=N1  i=0 j=O 01C m+iCn+j

(112)
H filters with negative or zero peak frequency can be similarly applied, and they can
all summed into S(vx, vy).

4.2.1 Error Estimation

Two error sources are going to be considered in error estimation. One is the white

noise contained in the original images. The other is the truncation error in Eq. 110.
Suppose the intensity of the white noise contained in the two images are both N", it is
equivalent to that the first image contains 2N. noise, and the second image contains
no noise. Therefore, both error sources result in inaccuracy of Vmn in Eq. 112, which
consequently causes the estimation error of (vx, vy).

Suppose the errors of Vmn, vx and v. are dVm, dvx and dvY respectively, we can
differentiate both sides of Eq. 112 as

)1/M2  N 2  2 2-i

os - 2Re Z 1 ((Vm, - EZ Ci cm Un(m+i)(n+j))
m=M1 n=N1 i=0 j=2 Cm+iCn+j
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2 2-iOi CmC U (113)(-ZZFOx + +
i= OVX Cm+iCn+ U0

as M2 N2 * 2(2--i Cm2Cn-v = 2Re E 1: ((VL -j E ECij- C u(*M+i)(n+j))
m=Mi n=N1 i=0 j=O Cm+iCn+j
2 2-'OC.i CmCn

_-E E 1v3(•i(•+)) (114)

i=0j=0 a Cm+iCn+j

At the minima, the above gradient should be zero. Then the task of the error es-
timation' is to estimate how the minima will move when there is a small random
perturbation in V,,. Let

2 2-3' -/ f mC

Cmn (Vx, Vy) 2 E Cij (i, -, v, CmCn U(M+i)(n+j), (115)
i=0 j=O a O0 Cm+iCn+j

we can take differentiation of right sides of Eq. 113 and Eq. 114,

Re 1(VL -Cmn) I I dvx +
\m,n

Re (Z(Vn -Cmn) 2Cmn• Vy CDCmn dvy

= Re(-, E -Cmn dV*), (116)

omnmoc f m,

D2Cmn DC~ Cmr
Re : Vmn -CM*.) Dy 2a Dvý 12) dvx

(mn Y

)92 = W, (118)

where A is a 2x2 real matrix, and W is a 2xl real vector. From above equation, we
can have the covariance error estimation,

S[ dvd dvx dvy ] E[wWT]AT (119)

[ dv,,dvy dvydvy

where we have
w T 1 1(1lCm-c 112 aC* _Q•)

___IRe _c X ao II 2 E[II dVmn 112], (120)

ac )c* 1 2 aii.
by applying Eq. 48.
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4.3 Summary

Our new hypergeometric filter approach can in principle handle any problem of ex-

tracting one or more parameters from a nonstationary transform between two images.

We showed how to approach the optical flow computation problem, which is a two

parameter extraction problem. For different parameter extraction problems, the al-

gorithms of the hypergeometric approach differ only in the Taylor's expansion for

different transforms.

5 Comparisons of Moment Filters and Hyperge-
ometric Filters

Because both moment filters and hypergeometric filters have similar recursive prop-

erties in the spatial and Fourier domains, they have the same strategy for solving

parameter extraction problems. This strategy uses a polynomial to fit the underlying

transformation curve, which is a surface in two parameter cases and hypersurface in

more than two parameter cases, and therefore obtain results of much higher precision

the traditional approach which uses a constant to approximate the curve. In this re-
spect the two approaches are equally effective in computing accurately and handling

the foreshortening problem. On the other hand, the hypergeometric filter approach

can solve multiple parameter problems, while the moment filter is good at dealing

with one parameter problems even though it is possible that multiple bands can be
combined to solve multiple parameter problems.

The moment filter approach is based oh a single frequency band. Thus we have the

freedom to sample the frequency space as we like. The disadvantages of this freedom
is that there is no way that we can sample the frequency domain perfectly. A dense

sampling scheme undermines the assumption of the Kalman filtering in combining re-

sults, while a sparse sampling scheme abandons information contained in images. On

the other hand, the advantage of this freedom is that we can have more sophisticated

window scheme such as the wavelet scheme in [30].
The advantage and disadvantage of the hypergeometric filter approach are exactly

the opposite of those of the moment filter approach. The hypergeometric filter ap-

proach samples the frequency space in a canonical fashion such that all information
are utilized. But on the other hand, we don't have the freedom to choose different

window size for different frequency bands.

6 Implementation Issues and Experiments

6.1 Moment Filter Approach

In this section, we will explain some implement ational issues of the moment filter ap-
proach, and quantitatively compare the focus and stereo algorithms based on moment
filters with other algorithms in literature.
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Figure 8: Frequency Sampling in Fixed Window Scheme

6.1.1 Sampling of the Frequency Domain

The moment filter approach described above is based on one single Gabor filter. Since,
the information contained in a image is usually distributed in all frequency bands, we
have to use multiple Gabor filters and their accompanying moment filter sets. At this
point, the sampling of the frequency domain by Gabor filters is still arbitrary. In our
2D implementation of the moment filter approach, the sampling is done in a polar
coordinate, i.e. the frequency domain is sampled in radial and angular directions. The
angular sampling rate is one per 30 degrees, and the radial sampling rate is chosen
as one per 0.7/a, where a is the window size parameter. The minimum frequency is
one-tenth of the Nyquist frequency, and we use only the first 48 samples in the polar
sampling. Therefore, we have totally 48 Gabor filters and 48 moment filter sets. In
the experiments shown below, we use up to the 4th order moment filters.

Though the moment filter approach can be applied under any frequency sampling
scheme, we have to choose one for experimentation. There are two window schemes
which are related to the radial frequency sampling. In the fixed window scheme,
because a are the same for all Gabor filters, the radial frequency sampling is uniform.
In the variable window scheme,

a = kA, (121)

where k is a constant and A is the peak wavelength of the Gabor filter, the radial
frequency sampling is nonuniform. We don't intend to compare these two window
schemes here, but rather provide two choices for the convenience of experimentation.
Figure 8 and Figure 9 illustrate the sampling of the frequency plane under the window
schemes. The circles represent the effective bandwidth of Gabor filters.

The major difficulty of the filter-based approach in implementation is its enor-
mous amount of computation and memory requirements if we need to sample many
frequency bands. We believe that the as parallel computers become more powerful,
this problem will be much less severe. Because of this limitation, we only use 48
filters which is a very sparse set of samples in the frequency domain. We believe that
if we sample the frequency domain in a denser fashion, we could be able to further
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Figure 9: Frequency Sampling in Variable Window Scheme

improve the results reported here.

6.1.2 Focus

We implement the moment filter approach for the focus problem using the third order
Taylor's expansion in Eq. 26. Because computation of P1 in Eq. 40 requires the fourth
order moment filter, we need up to the fourth order moment filters for every Gabor
filter. To accommodate numerical errors, the convergence thresholds in Eq. 33 and
Eq. 45 are set to 0.9. Results from different frequency bands are merged optimally
through Kalman filtering as in [24].

Subbarao's algorithm in [26] is directly from Eq. 21, which can be regarded as a
special case of our moment filter approach, in which the Taylor's expansion in Eq. 26
only keeps the constant term. But Subbarao's algorithm can not be extended to deal
with the shift variance problem.

We implemented both algorithms under the variable window scheme, in which k
in Eq. 121 is 0.8. The performance tests are done on both synthetic and real images.
The original image is shown in Figure 10. We uniformly blur the image by a Gaussian
function with parameter Or = 1.0 to get the first synthetic image pair. We also non-
uniformly blur the original image by a Gaussian function with parameter or0 increases
linearly as the column increases, to get the second synthetic image pair.

Since in 2D images, the slope of a surface has to be represented by a vector instead
of one number in Eq. 22, we have to solve three unknown equations in case of 2D
image pairs instead of two unknown equations in 1D case.

We compare three different algorithms, namely, Subbarao's algorithm (SA), the
moment filter algorithm without considering slope (MFF1), and the moment filter
algorithm with considering slope (MFF2). Table 1 shows the root mean square errors
of the synthetic image pairs using different algorithms. In the case of the first pair,
MFF1 and MFF2 shows almost no error at all, while SA has a significant amount of
error. In the case of the second pair, the RMS error of SA is 4 times larger than that
of MFF1, and 27 times larger than that of MFF2! We can see that the main error
source of Subbarao's algorithm is from the truncation of information from moment
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Original Image Uniformly Blurred Image Nonuniformally Blurred Image

Figure 10: Synthetic Texture Images For Focus

SA MFF1 MFF2
The First Pair 0.070518 0.000749 0.000316

The Second Pair 0.190362 0.046419 0.007976

Table 1: RMS Errors of Different Algorithms

filters. When the surface is slanted, i.e. the foreshortening happens, it also causes
errors depends on how slanted the surface is. The MFF2 algorithm can correct the
errors caused by the foreshortening.

To see the precision of different algorithms, Figure 11 shows the computed local
blurring difference ao of the first image pair, and Figure 12 shows the computed local
blurring difference o0 of the second pair. Furthermore, Figure 13 illustrates the slope
vectors computed by MFF2 for the second image pair. Note that the slope vector
has been scaled by ar as the left side of Eq. 42, which causes the magnitudes of slope
vectors increases horizontally. We can see that MFF2 not only can correct the errors
caused by the foreshortening, but also estimate the slope of the surface.

The real image pair is shown in Figure 14. These two pictures are taken by the

SA MFF1 MFF2

Figure 11: Computed Blurring Difference of The First Pair
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SA MFF1 MFF2

Figure 12: Computed Blurring Difference of The Second Pair

Figure 13: Computed Surface Slope of The Second Pair
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Figure 14: Real Image Pair of A Toy House

Photometrics camera [28] under different aperture and exposure time setting. The
toy house is about two meters away from the camera, and the size of the house itself
is about 2.5 inches wide, 3.0 inches long, and 4.5 inches high. To compensate for
the optical vignetting and different exposure amount between two images, we use an
approximately uniform illumination to correct them by putting a diffuser in front of
the camera, and a light source far away.

Figure 15 shows the computed blurring difference of the house image pair using
Subbarao's algorithm. We can see that the result is so noisy that the shape of the
house can not be observed with confidence. Figure 16 shows the result using MFF1.
By now the shape of the house is clearly visible though the discontinuity still generates
a lot of spikes. Finally Figure 17 shows the result using MFF2. We can see that the
result is even more smooth. Additionally, Figure 18 shows the computed slope and
estimated error (E[durdur] in Eq. 50) in MFF2. We can see that most of the slope
vectors have the correct direction despite that the slope is very small (P/ - 0.002 in
Eq. 22), and the discontinuity generates very large slope vectors and estimated errors
which can be used to locate the discontinuity in later processing stages.

6.1.3 Stereo

Though filter-based stereo algorithms may be able to alleviate the mismatch problem,
our concern here is focused on the precision of subpixel registration. We will compare
our algorithms with Kanade & Okutomi's adaptive window scheme [13]. A simple
SSD-based matching is performed to generate pixel resolution disparity, and the same
pixel resolution disparity is used for our algorithms and Kanade & Okutomi's algo-
rithm.

We implemented out algorithms under the fixed window scheme, in which the
window size a = 7.0. The minimal radial frequency is 7r/10, and the maximal radial
frequency is about ir/3. There are totally 48 filters as shown before. For Kanade &
Okutomi's algorithm, the range of the window size is from 3 to 21, and the iteration
is 5 times. For simplicity, we will denote Kanade & Okutomi's algorithm as KOA,
the moment filter approach without slope correction as MFS1, and the moment filter
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Figure 15: Blurring Difference of House From Subbarao's Algorithm

Figure 16: Blurring Difference of House From MFF1
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Figure 17: Blurring Difference of House From MFF2
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Figure 19: The Original Texture Image

approach with slope correction as MFS2. The RMS errors we will use below are in
pixel width.

We first test stereo algorithms on synthetic images. The first two test image pairs
are obtained by artificially shifting an original image. The first image is by a uniform
subpixel shift of the original one, and the second image by a nonuniform subpixel
shift, which naturally results in stretching or compression. Technically the subpixel
shift is achieved by linearly interpolating the original image. Figure 19, Figure 20 and
Figure 21 shows the original and shifted images. The uniform shift in Figure 20 is 1.55
pixel size, and the nonuniform shift in Figure 21 increase linearly from 1.0 pixel size
at zero column to 3.54 pixel size at the rightmost column. The third synthetic image
pair is the 20th and 21st frames of the translating tree sequence [3] as in Figure 22.
The scene is a planar surface textured by a picture of a tree. Because the ground
truth of the motion is in horizontal direction, we can use them as a stereo pair. The
disparity is between 1.73 and 2.26, and it increases linearly from left to right. The
interpolation method for subpixel shifting is unknown.

Table 2 shows the RMS errors of disparity values computed by different algorithms.
We see that for the first uniformly shifted image pair, all algorithms can do very well.
Because the RMS errors in this case are less than one percent of the pixel size,
we believe that we are approaching the limit set by the spatial sampling. For the
nonuniformly shifted pair, we see that the errors are significantly larger than those
from the uniformly shifted pair. Figure 23 shows the disparity values of an arbitrary
row for the nonuniformly shifted image pair. We see that the ripples generated by
KOA are significant in this example. Furthermore, Figure 24 illustrates the slope
computed by MFS2. For the tree pair, Figure 25 shows the disparity maps computed
by different algorithms. And Figure 26 illustrates the slope computed by MFS2.

We tested these algorithms on two real image pairs, which were taken by the
Photometrics Camera in CIL[28]. The targets were about 2.5 meters from the camera,
and the camera was translated horizontally by 0.5 inch between left and right view.

36



Figure 20: The Uniformly Shifted Image

Figure 21: The Nonuniformly Shifted Image

Uniformly Shifted Pair Nonuniformly Shifted Pair Tree Pair
KOA 0.008 0.035 0.016
MFS1 0.008 0.024 0.012
MFS2 0.006 0.020 0.010

Table 2: RMS Errors of Disparity From Synthetic Images
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Figure 22: The 20th and 21st Frames From Translating Tree Sequence
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Figure 23: Computed Disparity From the Nonuniformly Shifted Pair
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Figure 24: Slope Of The Texture Pair Computed by MFS2
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Figure 25: Disparity Maps From the Tree Pair

-------------

-~---------------

------------

4-- --.. 4----------

-- --------- 4---.-

4---------------

Figure 26: Slope of the Tree Pair by MFS2
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Top Patch Left Patch Right Patch
(6690 Pixels) (16025 Pixels) (19625 Pixels)

KOA 0.063 0.032 0.027
MFS1 0.039 0.024 0.020
MFS2 0.018 0.020 0.016

Table 3: RMS Errors of The Cube

Figure 27: Images of A Textured Cube

Because there is no vergence, the disparity map of a planar surface should still be
planar. We will fit a plane to regions in the disparity map which correspond to planar
surfaces, and then compare quantitatively the performance of stereo algorithms. Note
that when we fit planar patches, we exclude those pixel near boundary so that the
RMS errors we computed are not influenced by the depth discontinuities.

The first pair is images of a textured cube as in Figure 27. There are three large
planar surfaces, which we denote as top patch, left patch, and right patch as in
Figure 28. The difference between the largest and the smallest disparity is about 3.0
pixel widths. Figure 29, Figure 30, and Figure 31 show the computed disparity maps.
We can see that the disparity map computed from KOA contains more ripples than
those from MFS1 and MFS2. Furthermore, Figure 32 illustrates the computed slope
from MFS2, which correctly indicates not only the direction of the slope, but also the
magnitude of the slantness. Table 3 shows the RMS error after plane fittings. We
observe that both MFS1 and MFS have better performance than KOA, and the RMS
error of MFS2 keeps almost constant when the surface slantness increases, which we
attribute to the slope correction MFS2 performed.

The second real pair is images of the same toy house we used in the focus experi-
ments. Figure 33 shows the image pair we used for the stereo computation. There are
two slightly slanted planar surfaces, which we denote as the left patch and the right
patch as in Figure 34. The difference between the largest and the smallest disparity
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Figure 28: Planar Surfaces of The Cube

Figure 29: Disparity Map of The Cube From KOA
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Figure 30: Disparity Map of The Cube From MFS1

Figure 31: Disparity Map of The Cube From MFS2
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Figure 32: Slope of The Cube From MFS2

Left Patch Right Patch
(11260 Pixels) (13204 Pixels)

KO 0.032 0.031
MFS1 0.028 0.017
MFS2 0.019 0.017

Table 4: RMS Errors of The Toy House

is only about 0.5 pixel size, excluding the background. Figure 35, Figure 36 and
Figure 37 show the computed disparity maps from different algorithms. Again, we
can see the consistent step-like ripples from KOA. Figure 38 illustrates the computed
slope from MFS2, which indicates the and magnitude and direction of the slope on
the surfaces, and locates the discontinuities by large slope values. Table 4 shows the
RMS error after plane fittings of the two patches.

6.2 Hypergeometric Filter Approach

6.2.1 Computation of Hypergeometric Filters

Unlike most other filters, the numerical computation of a hypergeometric filter itself
is a nontrivial problem. The infinite series representation of the confluent hypergeo-
metric function in [25] (Equation 47:3:1) converges very slowly when the parameters
are not very small. Furthermore, when one parameter is negative, the adjacent terms
in the infinite series could conceal each other such that their sum is dominated by
roundoff errors. From experiments, we found that the so-called "Algorithm 707" in
[19, 18] worked well most of time in computation of the hypergeometric filters with
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Figure 33: Stereo Images of A Toy House

Figure 34: Planar Surfaces of The Toy House
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Figure 35: Disparity Map of the House From KOA

Figure 36: Disparity Map of the House From MFS1

45



Figure 37: Disparity Map of the House From MFS2
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Figure 38: Slope of the House From MFS2
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IP = 10. But it did fail sometimes indicated by either the numerical evaluator of the
confluent hypergeometric function failed to terminate or the computed hypergeomet-
ric filter had a sharp spike. In case of its failures, we observed that applying Kummer's
transformation first, and then evaluating the confluent hypergeometric function can

solve this difficulty. Kummer's transformation is

,(a, c, x) = e4,(c - a, c, -x). (122)

Fortunately we don't have to generate the H filters online, which may be a very
challenging numerical problem. Instead, we can generate the H filters according
to Eq. 84, and in case the numerical algorithm fails for a filter, we use Kummer's
transformation, and recompute the filter. Our experience is that, when m < 40,
we should apply the Kummer's transformation first to Eq. 84, otherwise, we should
evaluate Eq. 84 directly.

The 2D extension of the H filter is as straightforward as:

hij(x,y) = hi(x)hj(y). (123)

For real value images, because the Fourier transform I(fx, fy) has the property,

IYf, ,fA) = P*(_-fXI-fy),I

only half of the plane needs to be sampled. From Eq. 81, the Nyquist frequency 7r is
reached when

m • dr2 r. (124)

Due to hardware limitations, we will not be able to use all the filters up to the Nyquist
frequency in our implementation here. Instead, we will use the (i,j) (Eq. 123),
correspondingly (fx, fy), contained in the shadow area in Figure 39, in which,

U1 -- (125)
dr

U 2 - (126)

V1 -- (127)

V2 N2  (128)

Again, we believe that once we are able to fully explore the whole Fourier domain
up to the Nyquist frequency by advancement of more powerful hardware, the results
reported here should be improved considerably.

6.2.2 Optical Flow

We adopt the 2D conjugate gradient algorithm in [22] (function frprmn) to com-
pute flow vectors. For stability of numerical computation, we actually minimize the
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Figure 39: Frequency Sampling in Our Implementation

normalized version of S(vx, vy) in Eq. 112,

S'(vx, vY) S(vX, vY) (129)ZmEn II Vmn IIj229

As we did in the moment filter approach, we truncate the Taylor's expansion after
the third order term in Eq. 110.

There have been many algorithms to compute optical flow from two or more images.
Among the published work, Barron et al [3] provided a quantitative measure for
a few of the optical flow techniques. We will demonstrate the capability of our
new technique on the same test images for comparison. While most of techniques
presented in [3] use a sequence of images, our technique use just two adjacent frames.
No pre-smoothing in the spatial domain or the temporal domain is done, therefore
the quantization error and noise is much higher. The error measurement we use is
the angular measure in [3],

ike=arccos VXVQX + VYV0Y + (130)V2+V2 + '/V0_2= v + I

where (vx, vy) is the computed optical flow, and (vox, voy) is the true optical flow. We
don't use the standard deviation measure in [3] because it is hard to interpret. All
angular errors are in degree (0).

Without any post processing, the approach proposed here will certainly compute
a velocity at every pixel. Two well-known intrinsic problems have to be addressed,
i.e. the aperture problem and the no-texture problem, both resulting from a lack of
intensity variation around a pixel. If the error estimation procedure indeed works
properly, the covariance matrix it computed will have one large eigenvalue in case
of the aperture problem, and two large eigenvalues in case of no texture at all. The
corresponding eigenvector should indicate the direction in which large uncertainty
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Technique Number

Horn & Schunck (original) 1

Horn & Schunck (original)]1 VI 11> 5.0 2
Horn & Schunck (modified) 3
Horn & Schunck (modified) II VI 1> 5.0 4
Lucas & Kanade (A2 _> 1.0) 5

Lucas & Kanade (A2 _> 5.0) 6
Uras et al. (unthresholded) 7
Uras et al. (det(H) > 1.0) 8
Nagel 9
Nagel 11VI 112> 5.0 10

Anandan 11
Singh (step 1, n =2, w= 2) 12

Singh (step 1, n = 2, w = 2, Al < 5.0) 13

Singh (step 2, n = 2, w = 2) 14
Singh (step 2, n = 2, w = 2, A1 _< 0.1) 15
Heeger 16

Heeger (level 0) 17
Heeger (level 1) 18
Heeger (level 2) 19

Waxman et al. (07 = 2.0) 20
Fleet & Jepson (T 1.0) 21
Fleet & Jepson (r = 1.25) 22
Fleet & Jepson (T = 2.5) 23

Table 5: Numbering the Optical Flow Techniques

occurs. To compare our results with those from other techniques, we threshold the

computed optical flow by the following formulae:

Emax <T, (131)
X y+ +1

in which Emax is the largest eigenvalue of the covariance matrix, and T, is the
threshold. By setting T, to different values, we can obtain a curve of error versus
density as we will show later.

For the convenience of comparisons, we number the various techniques imple-
mented in [3] as in Table 5.

For the Yosemite sequence (Figure 40), we use the 9th and 10th frames to compute
the optical flow as they are the two frames in the middle of the sequence. The size
of the H filters is a = 7.0, and the sampling limits in Figure 39 are: M1 = N1 =

0, M 2 = N 2 = 10, which correspond to the area in the Fourier domain: (0.0 <
f. _K 0.45, -0.45 < fy < 0.45). In other words, we only use information whose
frequency is lower than one-sixth of the Nyquist frequency. Figure 41 shows the raw
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The Ninth Frame in Yosemite Sequence The Correct Flow

Figure 40: Yosemite Image Sequence

(unthresholded) optical flow computed. Surprisingly, the movement of the clouds
is captured accurately. The curve of the density versus average error is shown in
Figure 42 along with the results reported in [3]. For further comparison, we listed the
average error and the corresponding density in Table 6. The numbers in Figure 42
are the numbered techniques in Table 5. We can see that except for a couple of
techniques which impose smoothness constraint at 100% density, our approach has
the best results for all densities, despite the fact that we only use low frequency
information from only two frames.

The monotonic increase of the average error with respect to more restrictive eigen-
value threshold indicates that the error estimation indeed represented the uncertainty
properly. Furthermore, as a covariance matrix can be represented by a ellipse whose
two principal directions are the two eigenvectors, and whose radii are the square roots
of the corresponding eigenvalues, we superimpose the ellipses on top of the darkened
image in Figure 43. First of all, from the size of ellipses, it indicates that the top
portion and low-left portion have large errors which is consistent with Figure 41 and
Figure 40. Also we observe that at locations where the aperture problem is obvious,
e.g. near a single edge, the ellipses are elongated in the direction of edges, which
represent the lack of information in those directions.

The second synthetic sequence is the translating-tree sequence (Figure 44) from [3].
We used the 20th and 21st frames to compute the optical flow. The size of the H filters
is a = 3.5, and the sampling limits in Figure 39 are: M, = N1 = 0, M 2 = N2 = 15,
which correspond to the area in the Fourier domain (0.0 < f. _• 1.233, -1.233 <

S< 1.233). In other words, the highest frequency of the inform ation we used is
one-third of the Nyquist frequency. Figure 45 shows the unthresholded optical flow.
Except sparse locations where there are no texture, the computed optical flow is
pretty consistent with the ground truth. The curve of the density versus average
error is shown in Figure 46, in which some results with large errors reported in [3]
are not included, and and Table 7. Again we can see that our approach based upon
only two adjacent frames and only low frequency information outperformed all the
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Figure 41: Computed Optical Flow of the Yosemite Scene
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Figure 42: Average Error For the Yosemite Scene
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Average Error Density
2.076670 1.67%
2.094967 3.03%
2.172882 5.94%
2.287890 9.25%
2.539107 16.01%
2.855300 23.05%
3.090271 28.95%
3.227844 33.87%
3.329092 37.90%
3.427297 40.97%
3.814695 48.93%
4.202163 55.16%
4.533337 60.26%
5.056063 68.17%
5.464669 72.73%
6.321297 79.80%
6.990403 84.22%
7.913178 89.40%
8.625618 92.77%
8.970320 94.59%
10.121454 100%

Table 6: Density vs. Average Error of Yosemite Scene

Figure 43: Uncertainty Estimation in Yosemite Scene
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The 20th Frame in Translating-Tree Sequence The Correct Flow

Figure 44: Translating Tree Image Sequence

algorithms at all densities.
Figure 47 shows the uncertainty ellipses superimposed on the darkened image. We

can see that the uncertainty estimation not only detects the lack of information along
certain direction, e.g. the aperture problem along trunks, it also represented large
errors caused by blank areas between trunks.

A more tricky synthetic sequence is the diverging tree sequence from [3, 7] as
illustrated in Figure 48. The significant difference between this sequence and previous
sequences is that the underlying optical flow has a very high gradient, i.e. the image
velocity changes rapidly as the location in the image changes. In fact, if we shift the
correct optical flow by only two pixels horizontally, the average angle between the
shifted and the original optical flow is 1.370 comparing to 0.08° for the translating
tree sequence and 0.650 for the Yosemite sequence. If the window size is larger than
two pixel widths, we can expect that the average error of the computed optical flow
should be much larger than 1.37'. While some results reported in [3] is very close
or even smaller than 1.37°, we believe that the only reason those algorithms can
reach such a precision is due to the averaging in the temporal direction. Actually,
as the authors pointed out in [3], the errors of the differential approaches went up
substantially when only two images are used. And because the temporal averaging is
crucial in this sequence, we argue that the comparisons made in [3] (Table 5) is not
fair for those algorithms with shorter temporal support.

Using the same parameters as those in the translating tree sequence, we computed
the optical flows from adjacent frames. Table 8 shows the average errors when us-
ing only the 20th and 21st frame, and the average errors when we average fourteen
computed optical flow fields from the 13th frame to the 27th frame. First of all, they
did verify our observation that the average angular error close to 1.37' can only be
achieved by averaging along the temporal direction. Secondly, the average error of
our algorithm after averaging the fourteen optical flow fields is smaller than all the
results'll results reported in [3] use at least fifteen frames except those from Fleet &

1A
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Figure 45: Computed Optical Flow of the Translating Tree Scene
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Figure 46: Average Error For the Translating Tree Scene
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Average Angular Error(') Density
0.149777 1.99%
0.171012 10.05%
0.171912 20.89%
0.174841 26.22%
0.185415 36.59%
0.199455 45.09%
0.206545 52.08%
0.213830 57.48%
0.218359 61.58%
0.222904 64.73%
0.237176 78.72%
0.242210 84.52%
0.248934 86.27%
0.268584 90.39%
0.323182 95.25%
0.618968 100%

Table 7: Density vs. Average Error of Translating Tree Scene

Figure 47: Uncertainty Estimation in Translating Tree Scene
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Figure 48: The Diverging Tree Image Sequence

Density Average Error From Average Error From
Two Frames Fifteen Frames

10% 2.191357 1.629412
20% 2.188124 1.595904
30% 2.292716 1.626959
40% 2.386003 1.647144
50% 2.483744 1.696696
60% 2.570150 1.724406
70% 2.686011 1.784787
80% 2.825161 1.863550
90% 3.038625 1.996772
100% 3.408894 2.195650

Table 8: Average Error of The Diverging Tree Sequence

Jepson's algorithm which achieved errors less than 1.370. We suspect two reasons of
the outstanding performance of Fleet & Jepson's algorithm reported in [3]. One is
that the extension of 2D image to 3D spatiotemporal signal is a better way of tem-
poral averaging than the sample averaging of the optical flows. The other reason is
that the implementation of Fleet & Jepson's algorithm utilizes only high frequency
information which is more robust against large velocity gradient.

We also tested our algorithm on the four real image sequences in [3]. For all the
real image sequences, we take two frames in the middle of each sequence to compute
optical flows. The size of the H filters a = 4.5, and the sampling limit in Figure 39
is M1 =N 1 =0, M2 = N 2 = 15, which correspond to the area in the Fourier domain
(0.0 < f, < 0.86 -0.86 < fy < 0.86). For each experiment, we show four images:
the middle frame in the sequence, the unthresholded optical flow, thresholded optical
flow and the uncertainty estimation.

The first sequence is a scene of a intersection. Three cars are moving. The motions
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of the two black cars are difficult to detect using traditional approaches since the
contrasts are low. The white lines in the lower part of the image cause aperture
problems which are also detected in the uncertainty estimation by extremely narrow
and long ellipses. The second sequence is a static scene and the camera moves toward
the coke can in the middle of the image. The aperture problem and weak texture
problem happen almost everywhere as we can see from the uncertainty estimation.
The third sequence is a scene of trees and the camera moves horizontally. And the
fourth sequence is a scene of a rotating Rubic cube and a platform.

Though there is no objective measure to compare our results with those reported in
[3], we can still conclude that in average the performance of our algorithm is superior
to those in [3] in both density and precision by looking at them, despite the fact that
we only used two frames in each sequence.
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A Orthogonality and Completeness of Moment

Filters

At first, let's rephrase the theorems from [20] (page 23, page 29, page 59) and list

them as following:

Theorem A.1 The generalized Laguerre's polynomial L(n, a, x) is the solution of the

following differential equation:

xy" + (1 + a - x)y'+ ny = 0. (132)

Theorem A.2 If
xk+l+eC-xlx=ab = 0, (k = 0,1,...), (133)

at the endpoints of an interval (a, b), then the polynomial L(n, a, x) corresponding to

different n 's are orthogonal on (a, b), i.e.

Jb
L(n, a, x)L(m, a, x)xcx-xdx = 0, when(m h n). (134)

Theorem A.3 Let f(x) be continuous on a < x < b and have a piecewise continuous

derivative in this interval, If the integrals

jb f 2 (x)xc-xdx, f•[f'(x)]2x +e-xdx (135)

converge, then the following expansion is valid:

00

"f(x)= ZcnL(n,a,x), (136)
n0O

where,
fab f(x)L(n, a, x)xae-xdx (137)

fa L(n,a,x)L(n,a,x)xa-exdx(

Let's set fo = 0 in Eq. 8, we will prove that in this case the set of ki(x) is orthogonal
and complete. The case when fo h 0 can be similarly proved.

Because k2n is an even function, and k2,+1 is an odd function, we have

< k 2 n(x), k 2m+l(X) >=< k 2 m+l(x),k 2n(X) >= 0. (138)
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And
< k2n (X), k2m (X) >

2m+nm!n! +00 1 1 X2 X2
v/27-O'2(m+n)+1 .--_ L00 2' 20r"2 ) m, 2' 2-- )e2 •--

2m+nm!f! or +0 1 1 -12,,2(m+rn)n 1 72 L(n, -1- t) L (m,-1, t)t-½~e-Ytdt (139)
•2(m•+n)+1 2• a 2'2

x2

where we replace • by t. Set the interval (a, b) to (0, +oc), and apply Theorem A.2
to the above equation, we have

< k 2n(x), k2 m(X) >= 0, when(m # n). (140)

Similarly
< ]k2n+l(x),k2rn+l (X) >

2r+frn!nl J+0x
2L(n, +# x#2X2 1 x 2

x 2 L~n , -)LmII )e ,2dx
= -v r2(m+n)+5 -o0 2' 2g,2) ' 2' 2u2-d

2m+nm!n +00 1 1 1-dV2n L(n, - t)L(m -, t)tfe-dt
v/2lr 2 (-2+n)+ 2  '2 2

S0, when(m # n). (141)

From Eq. 138, Eq. 140 and Eq. 141, we prove the orthogonality of the moment filters,
i.e.

< ki(x), kj(x) > = 0, when(i-• j). (142)

For any function f(x), it can always be decomposed into sum of an odd function
ýo(x) and an even function ý,(x) as,

Gx 2 = I( (x) - ý(-x))

G( W = I( (x) + ý(-X))

ý(x) = &W(x) + (x). (143)

From Theorem A.3, in the interval (0, +±c), for any function g(t) which satisfies
Eq. 135, we have

t 1200.1
S1(t) E C L(n, t), (144)

n=O 2

g(t) - 00dmL(m,--t). (145)
m•O

Therefore, let t x-, we have

X2 00 1 2

g2 = x/ cnxL(n, 1 2-), (146)

x2 00 1 2

g(---) = - dL(m, 2, (147)
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x2 x2

Because g(t) can be any function, we can let g(2-!) =o(x) in Eq. 146, and g(2-!) =

e,(x) in Eq. 147. Replacing them into Eq. 143, in (0, co) we have

+co 1 x2 +00 1X 2

•(x) = v >-2ou cxL(n, 2, 2U2) + 1o d-L(m, 2 2U2)
n=O M=O 2 o

+: w_ ki(x), (148)
i= < ki (x), ki (x) >

where, when i 2m,

o-2 m

W2 mm < k2m(x), k2m > dm

1 - 2m!.1 1 X2 1 X 2 X2 dx

72= 92 7nL(m, 2 2U2)L(mI 2 22

fo+°° & (x))L(m, - ,2 a d( x2--•,L m )( )-1/u - e2•)
f0+00L(•, : :- 1,x )L(m,-1, 2• ) L2- -) (, 2o"2) d(-E,2-)

2- !! 1 +-0 1 x2 ) 2
2 m VF•ror I o(x)n(•, -IO2' -)-dx

2m!! 1 -+00 1 X2, 2 9
= m! &-(x)L(m, -- , -)e -;dx

u 2 m v2ir- 1-00 22,
2mm! 1 J+00 1(X2 1 x2  -2

• V•]-• (x)n(m, -2 e T;_2)-d
a 2 m r orc -00 22U

- < (x),k 2m (X) >. (149)

Similarly when i 2n + 1,

W2n+l =< 6(x), k 2 n + l (X) > . (150)

Similarly in interval (-oo, 0), we also have

w, =< 6(x), ki(x) >. (151)

B Properties of Moment Filters

B.1 Recursive Properties of Moment Filters

From Formula 22.3.9 in [1], we have the the explicit expression for the generalized
Laguerre polynomial as

n F r(n + a + 1)(-1)m
L(n,a,x) =_, 6X3 (152)
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Therefore, we have

L(n, 1/2, x) - L(n - 1, 1/2, x)
n IF(n + 3/2)(-1)m + n-1 F(Fn + 1/2)(-1)m xM

M=o F(m + 3/2)m!(n - m)!x m=o F(m + 3/2)m!(n - 1 - m)!

n-I r(n + 1/2)(-1)m .m (-1)n X

F - r(m + 3/2)m!(n - m)!tin + 1/2) - - m))x +mn n

E ~ r(n- 1/2 + 1)(-1)m _m

m=_ r(m - 1/2 + 1)m!(n - m)!

= L(n,-1/2, x). (153)

Similarly,

(n + 1/2)L(n, -1/2, x) - (n + 1)L(n + 1, -1/2, x) = xL(n, 1/2, x). (154)

Applying Eq. 153 and Eq. 154 to pi(x) in Eq. 2, we have
2 ' n ! x L In , 2'

xp2n(x) - L(n - 2122
2"n' n! n 1 X2 I X2)

xL~, ~-, ) - xL(n,,
-2• ! 2( 2C72 , 2' 20)

= j(U 2p2.+l(X)- 2nP2,-l(x)) (155)
XP~~i 2"n! 2 L"n I x 2

Xp 2 n+(X) n+2n 2 22

J 2"n 20r2((n + 1/2)L(n, 2 - (n +
= 2+2a 2n2a 2'_-n -lLn l 2,•fa2)

=j((2n + 1)p2n(x) - 2p2n+ 2 (x)). (156)

Actually Eq. 155 and Eq. 156 can be merged into a single recursive formula:

xpi(x) = j(ipi-q(x) - o 2pi+ 1 (x)). (157)

Replacing Eq. 157 into Eq. 1, we then obtain the recursive property of the moment
filters in the spatial domain,

xmi(x) = j(imi-l(x) - o'2mni+I(x)), (158)

Another recursive property of the moment filters is with respect to differentiation,
i.e.

m i(x) = 3 - ( , jfox• d g(x))

= j(mi+l(x) - fomi(x)). (159)

The following recursive property of the moment filters in the frequency domain is
obviously true from Eq. 4,

(f - fo)M(f) = Mi+l(f). (160)
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B.2 Relations to Instantaneous Frequency and Stability Cri-
terion

When we consider the filtering of the whole signal instead of only a specific spatial
location, the weights wi in Eq. 13 becomes a function of the location, i.e.

wj(xo) = L 6(x)mi(x - xo)dx. (161)

We knew that wo(xo) is the output of the Gabor filter, let

wo(xo) = Ro(xo) + jlIo(xo),

where Ro(xo) and Io(xo) are the real and imaginary parts of wo(xo) respectively. Then
the instantaneous frequency is defined as the spatial derivative of phase value, i.e.

d Ro0IO - R' ol
dxo R 0 + lo2

Jm(wowo)
- tw 0 0 (162)

where Im means the imaginary part.
From Eq. 161 and Eq. 17, we can compute the spatial derivative of wo as,

W/ j (x)+ (x - xo)dx

f 00

= -i 6(x)(mi(x - xo) - fomo(x - xo))dx
-00

j(fowo - Wi). (163)

Replacing Eq. 163 into Eq. 162, we then have

d Re(wlw*) (wl)(14
dxo¢(Xo) = fo WO - fo - Re , (164)

where Re means the real part.
The stability criterion of the Gabor filter output is usually formulated as a thresh-

old [6, 30],
1=I 2ad

T =11 a1xo 112 + 11 - fo 112, (165)

where a is the amplitude.
Because

ida RoR'R + IoI6
a dxo R o

Re(w~w')

WO 11 2

Im(wiw*)

II Wo11 2

=-Im(W•-X), (166)
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we then have

T II w1 112 (167)

C Error Estimations in Moment Filter Approach

C.1 Focus

Suppose the energy of the white noise in the image is N2, the noise energy in Uj or
Vi will be:

W2 = 2EN, (168)

where Ej2 is the energy of the filter in Eq. 31.

Let

C0(U) = u0 + fOUU1 - lu1 -( f2U) U2,
1Cl(u) = U1 + fouU2 - IU(1 - f 0 u)U3.

Replacing them back to Eq. 39 and Eq. 40, and taking the two error sources, i.e.
white noise W() and truncation error To, into consideration, we have:

u = 2 (ln(Co(u) + W(Co) + T(Co)) - ln(Vo + vPo + W(Vo))), (169)

V1 + vP1 + W(Vi) v Cl(u) + W(Cl) + T(Cl) (170)
Vo + vPO + W(Vo) Co(u) + W(Co) + T(Co)"

While the magnitude of the white noise error W(Co), W(C1 ), W(Vo) and W(V¾)
can be estimated from Eq. 168, the magnitude of the truncation error (assuming the
third order is truncated) can be estimated as

11 T(Co) 12 - + (Vo÷VPo)-Co j2- I2 1/fos 4(3-f~s2 )Uo S 12,

[ 1T(01)]2 = 11 e 2s2 (Vl v - Ci12 -E-- f/° 4 (3 - fOs 2)UO 112,

where the first term is the residual in Eq. 39, and the second the estimated energy of
truncated part.

From Eq. 169 and Eq. 170, assuming all the error sources are independent, after
some manipulations, we have,

[du 1f _ [2 - CO
[V v 2 Co (u) Vo +vPo

dv (VPo)C•(u) - (V 1 + vP 1 )Cf(u) C 1 Po - CoP1
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W(¢o)
W(Cl)

Co M Vo +vPo Co (u)
V1 + vP1 -(Vo + vPo) -Ci(u) Co(u) V1 + vP1 -(Vo + vPo) W(V1)

T(Co)
ST(Cl)

Rewrite the above equation in a more concise form, we have

d[u AW, (171)

where A is a 2x6 complex matrix, and W is the 6x1 error vector.

C.2 Stereo

Suppose the energy of the white noise in the image is N,2, then the noise energy in
Ui or Vi will be:

Wi2= 2EN, (172)

where E? is the energy of the ith moment filter.
Let

Co(D) = Uo - jDU1 - D2U2 , (173)
2

C0(D) = UI -jDU2 -- 1D2U3 , (174)
2

and C,(D) and C•(D) be their derivatives respectively.
The magnitude of the truncation error (assuming the third order is truncated) can

be estimated as,
Ht T(Go) 12 = II &-f0D(V0 + 1tPo) - Co II + 2IIU• o 112, (175)

2~ 6
IIT(C1 )I2 = II foD(yl + e-pl) - CO 112 +f I Uo II2, (176)

Q~ 6

whrencthed first.tr stersda nE.7,adtescn h siae nryo
truncated part.

We then have the error of D and t as linear functions of the two error sources, i.e.
white noise WO and truncation error To, as following,

dD ] [ -jfo - E PO ]I__ Co (D) Vo + tPO

dta +(Vo + i Po)C'(D) - (V1 + y P 1)CO(D) C1Po - CoP1

W(Co)

[ 1 n 1]
Co(D) 0 0 0 W(Vo)

V1 + y Pl -(Vo + ptPo) -0C(D) Co(D) V1 + ,uP1 -(Vo + P Po) W(V1)
T(Co)
T(C1 )
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Rewrite the above equation into a more concise form, we have

dD• AW, (177)

where A is a 2x6 complex matrix, and W is the 6x1 error vector.

D Properties of Hypergeometric Filters

In this appendix, we will prove some properties of the H filters, which are fundamen-

tal to their applications. The properties include the relation between H filters and

moment filters, the recursiveness in the frequency and spatial domains, and the re-

cursiveness with respect to differential operation. First of all, let us list the properties

of the confluent hypergeometric function (D(a, c, x), which are useful to us. All the

properties listed below are from Chapter 13 in [1]:

D(a, c, x) == - a, c, -x), (178)

(1 + a - c)4(a,c,x) - a(a + 1,c,x) + (c- 1)D(a,c- 1,x) =, (179)

c(D(a,c, x) - c4J(a - 1, c, x) - x4(a, c + 1,7x) = 0, (180)

n! 1L(n, a, x) = (D(-n, a + 1, x). (181)

(a +1)

From Eq. 84 and Eq. 86, using the relation between the Laguerre's polynomial and

the confluent hypergeometric function in Eq. 181, we have

1 x 2  X2
h2i(x) + h-2i(x) = 2am .. (-i, 2 202)e

i2 1 X2 X2
.(1/2)n L(, , 2120)er2-, (182)

h2i+l(X)-- h-( 2 i+l)(X) = j2bx•(-i,2'3 z2 202) X 2 M2

- j2bm (3/2) xL(i, 1 2a 2)(

in which the right hand sides are the moment filters (fo = 0) multiplied by constants.
From the definition of the H filters in Eq. 77, Eq. 78, and Eq. 79, we have the

recursive property of the H filters in the frequency domain,

fHm(f) = c' Hm+l(f),
Crn + 1

fHo(f) = -(Hi(f) - H-1(/)),
Cl

fH_ -(f) = Cm H-(m+l)(f).
Cm+1
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To prove the recursive property in the spatial domain, let us first simplify our
notations by the following replacements:

t 2 (184)

hm(t) = 2t2
7r(m +1/

(1F( m + 1),,(_n ~,1,t2) + 1 + r)O(2 -M 3 t2)t

= M2) (185)

where
`2 m lm 1 m2)(1--m 3 )1

C(t) = e- F(-)(---, ,t 2 )+jv'e(1+ 2

V2 2 2'2 2 2 72~b

1 m +l 1 +m M2I1Pmn) +2-' 3
72- ,]F(-- -)0( 2-2 + jv-2r(I + 2 -2t2 )t.(186)

Then by using Eq. 179 and Eq. 180 and the property of the Gamma function

F(x + 1) = xF(x), (187)

we have

1 1 +m 1+ml m 12 + _m__)t2o(2+m3

jtm(t) 2 ( )t4 2 2 2-t)-V2r(2 2 2'-t

=z-+m (MOO +m3 1+m 3+m 3 2P
= -jv/r22 )t 2 2 ) - 2 2 '2'

1 2+m ( 2+m 1 1) m1+ !--F( -- 2 ( 2 '2'- ) (2' 2'

2 2 2 2'
(1 (2F+ m .n I -t 2) ,-l+m1mm l+m 3 t2)t

,~,-t )jv'F(I
I =1(----+-- )p( 2 ' + 2' )-t2 ) +j*v/r( 3 ) 7 ( 3 +2m ,2,3 _ t2)t/

+(7F2±m2 ±2m 1 2 2± 2+

S (m-l() + pm+l(t). (188)

Replacing Eq. 188 into Eq. 185, we obtain

jthm(t) = + 1/2 h (- 2 M 1 hm-l(t). (189)

Then we replace t in Eq. 189 by Eq. 184. After some manipulations, we have

xhm(x) = -jcr ( m + lhm+l(X) - i / hml(X)) . (190)
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Similarly

xho(x) = 1j(h(x) - h-l(X)), (191)
2

xh-m(x) = JaT + h-(m+l)(x)- m h(ml)(X) (192)

About the recursive property of H filters about the differential operation, we have,
h'(x) [.[h'(x)]]

- .I'-'[jfHm(f)]
= cm .T.'[Hm+i(f)]

Cm-+1

Cm
= j- hm+l(X). (193)

Cm±l

Similarly

CO
ho(x) = j-(hi(x)-h_l(x)), (194)

Cl

h M(X) -= Cm h(m+l)(X). (195)
Cm-I-
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